7 Reasons Causes of Pulverization of Molecular Sieve in PSA Unit

1. Raw material gas carries water

Molecular sieves have strong water absorption and a strong affinity for water. It is difficult to desorb it by ordinary physical methods after absorbing water. The PSA system can hardly be removed under normal temperature conditions, resulting in a significant drop in the adsorption capacity of the molecular sieve and an increase in system pressure. After the molecular sieve absorbs water, the lateral pressure resistance is greatly reduced, and the molecular sieve is easily damaged during the frequent pressure equalization process of the PSA system.

2. High system pressure

Molecular sieves are particles with a porous structure. In the original design of PSA, full consideration should be given to the pressure resistance of molecular sieve. High pressure is good for adsorption, but it will cause bed fluctuations. The fluctuation of the bed layer will cause the friction between the molecular sieve particles to produce powder, causing the molecular sieve micropores to block and fail, the adsorption capacity will be greatly reduced, and the system pressure will increase. And this phenomenon gradually deteriorated, and finally a large amount of powder was discharged from the bed.

3. Poor filling quality of molecular sieve causes powdering

When the molecular sieve is too loosely packed and the filling amount is not enough, the friction between the molecular sieves is the largest, which can easily cause the molecular sieve to pulverize.

4. The splitter plate and filter cotton in the adsorption tower have a large layering error

When the molecular sieve is filled, the internal splitter plate and filter cotton have a large layering error, which will cause hidden gaps. When the system pressure is high, these gaps are released to the molecular sieve, causing the molecular sieve to become too loose and the bulk density to decrease, causing the molecular sieve to pulverize.

5. Frequent system switching and pressure equalization

PSA system design should consider the optimal dosage and switching period of molecular sieve, so that the gas production efficiency of molecular sieve is within a certain reasonable range. Short switching period will increase the gas production rate, but will increase the wear between the molecular sieves and cause the molecular sieve to pulverize.

6. Large resistance to exhaust nitrogen

The resistance of the PSA system to exhaust nitrogen is small. This can completely desorb and improve efficiency. Otherwise, the pressure in the system will rise in the next cycle, and the effective adsorption capacity of the molecular sieve will drop drastically. After long-term work, it is easy to cause molecular sieve powder.

7. The pre-tightening spring in the adsorber is small

The pre-tensioned spring in the adsorber can replenish the gap height of the sieve after the powder is discharged in time, and the height of the spring’s working point should be greater than the maximum pressure on the inner section of the adsorber. Otherwise, the molecular sieve gap cannot be filled in time, the bulk density will decrease, and eventually the bed will fall seriously and a large amount of powder will be discharged.

Table of Contents

Share:

More Posts

In Needs of Molecular Sieve Solution?

JALON JLOED MOLECULAR SIEVES USED FOR ELECTROLYTE DEHYDRATION

This letter is to inform you that we evaluated Molecular Sieve JLOED 3.0-5.0 MM product from Luoyang Jalon Micro-nano New Materials Co., Ltd to dry our organic solvents for production of electrolyte for Li ion battery. The resulting organic solvents that went through our process with the Molecular Sieve JLOED 3.0-5.0 MM product in our R/D and production facility located in Chico, CA, US passed our specifications showing extremely low content of moisture, below 10ppm. This Molecular Sieve product met our quality requirement, and it is highly recommended for use in the industry of Li ion battery for drying of organic solvents. We also appreciate the technical support from the company.

Nanotech Energy

Related Products
Cryogenic air separation unit Project
Yuntianhua United Commerce Co., Ltd. 52000 Nm3/Cryogenic air separation unit Project

Luoyang Jalon Micro-nano New Materials Co., Ltd. JLPM series molecular sieves are mainly used for cryogenic drying of general industrial gases. The purification system in the air separation unit removes H2O and CO2, as well as natural gas and other hydrocarbon desulfurization (removal of H2S and mercaptans) and CO2.

 

It is worth mentioning that Yuntianhua United Commerce Co., Ltd. Company 52000 Nm3/Cryogenic air separation unit project. The design and manufacture method of the air separation unit by air, adsorber adopt vertical radial flow design, processing capacity of 311352 nm3 / h, 5.13 Bar (A) adsorption pressure, loading type my company JLPM3 efficient molecular sieve 92 tons, 107 tons of activated alumina, can ensure that the CO2 content in the air mean 1000 parts per million (2000 PPM) instantaneous equipment and stable operation, export CO2 molecular sieve < 0.1 PPM.

The fifth-generation high-performance molecular sieve JLPM1 is an advanced molecular sieve used in the pre-purification unit (APPU) of air separation equipment. Compared with previous generations, the fifth-generation high-performance molecular sieve JLPM1 has significantly improved CO2 adsorption capacity; the fifth-generation high-performance molecular sieve JLPM1 will bring multiple benefits to air separation designers and operators. For the design of the new air separation plant, the application of the fifth-generation high-performance molecular sieve JLPM1 can make the air separation occupy a smaller area, thereby reducing equipment investment and operating costs. The fifth-generation high-performance molecular sieve JLPM1 can also be used for the transformation of old equipment, which can reduce energy consumption or improveair separation processing capacity.

Related Products
Zhuhai Yueyufeng Iron and Steel Co., Ltd. 30000Nm3/h pressure swing adsorption (VPSA) oxygen production project

Oxygen molecular sieve is an important material to ensure the work of VPSA oxygen production equipment. This project is another successful case of our JLOX-103 lithium-type high-efficiency oxygen molecular sieve.

 

The 30000Nm3/h pressure swing adsorption (VPSA) oxygen production project of Zhuhai Yueyufeng Iron and Steel Co., Ltd., designed and built by CSSC Huanggang Precious Metals Co., Ltd., was successfully started up on June 27, 2019. As of May 29, 2020, the device has been operating stably for 11 months, and all indicators are better than the design indicators. It has been highly recognized and praised by customers, and has created a cumulative effect of 150 million yuan per year for the enterprise. At the same time, the project has realized intelligent oxygen production, mobile control and remote monitoring to guide production, helping to realize the green and intelligent promotion of the industry.

 

The project uses 4 sets of pressure swing adsorption (VPSA) oxygen generators in parallel. The single set of device is designed to produce 7500Nm3/h of oxygen and 80% oxygen purity. It is filled with our company (Luoyang Jalon Micro Nano New Materials Co., Ltd.) JLOX-103 lithium-type high-efficiency oxygen molecular sieve is 68 tons, the actual oxygen output reaches 7650Nm3/h, and the oxygen concentration is above 82.3%. The 4 sets of equipment in this project are filled with 272 tons of our JLOX-103 oxygen molecular sieve, with a total oxygen production of more than 30000Nm3/h.

 

Oxygen molecular sieve is an important material to ensure the operation of VPSA oxygen production equipment. This project is another successful case of our company’s JLOX-103 lithium-type high-efficiency oxygen molecular sieve.

Luoyang Jalon Micro-nano New Materials Co., Ltd. JLOX-100 series high-efficiency oxygen generation molecular sieve is a lithium X-type aluminosilicate crystal, which is an oxygen generation molecular sieve with international advanced level. Widely used in: iron and steel, non-ferrous metallurgy, chemical industry, furnace energy-saving transformation, environmental protection, papermaking, aquaculture, medical care and other industries.

Related Products