A complete Guide on How to Activate Molecular Sieve

Anyone that has undoubtedly worked in a lab and been taught how important that dry solvent is, but the container with the mystical molecular sieve at the base just stays completely filled and no one can recall it ever being regenerated, correct? Perhaps it’s time to replenish those pellets!

sieves are a wonderful innovation. 3A molecular sieves effectively dry each popular solvent excluding acetone as well as or greater than a solvent still at 10-20% w/v. A container of sieves/solvent is also significantly less likely to catch fire and is far less expensive to keep in good working order.

The whole process of activating a molecular sieve may seem rather confusing. That is why we are going to walk you through it in this article. Let’s get to it! 

What is a Molecular Sieve?

3A Molecular Sieve
Source:Jalonzeolite

A molecular sieve is a penetrable material with pores of constant size. The diameter of these holes is equivalent to that of very small particles. As a consequence, big molecules are unable to move via these holes and are adsorbed, whilst smaller particles may.

The particles with the largest mass tend to depart first, trailed by those with lower molecular weights when a mixture of particles relocates through a packed bed of porosity and semi-solid substances (the sieve). As a corollary, these molecular sieves can help in chromatography. Particular varieties of molecular sieves can be used to make dryers.

It can be employed to dry gas flows in the petroleum sector, according to the molecular sieve material’s usage. Other solvents, as well as powerful desiccants, can be dried with this chemical. Catalytic applications can catalyze isomerization, alkylation, and epoxidation. Scuba divers and firemen wearing breathing apparatus can also utilize molecular sieves to filter their air supplies.

Why Do You Need to Activate a Molecular Sieve?

Question Mark painting on Trees
Source:Unsplash

Before using, molecular sieves should be activated (dried). Put a small number of molecular sieves in the palm of your hand and add a drop of water to see if they’re dry. They are dry if they emit a significant amount of heat. The main goal of activation is to increase their functionality and to keep the product dry and stable.

What Do You Need to Activate Molecular Sieve?

Yellow What Sign
Source:Unsplash

For Small Amount

Free Tiny Image on Paper
Source:Unsplash

Activating a molecular sieve in smaller amounts, use a flow control adaptor, heat molecular sieves to 120 °C in an oil bath beneath a high vacuum overnight (no stirring required). Refill with argon and use as needed. Inspect sieves for heat production on a regular basis and dry as required.

For Industry/Large Amount

To activate a molecular sieve for industrial purposes, you need to heat it under a high vacuum and a temperature between 175 °C to 315 °C.

The Process of Molecular Sieve Activation

Man Writing on Whiteboard
Source:Unsplash

In a conventional cycle system, regeneration entails heating and purging with a carrier gas to remove the adsorbate from the molecular sieve sheet. To evaporate the fluid and offset the heat of soaking the molecular sieve exterior, adequate heat must be given to elevate the temp of the adsorbate, the adsorbent, and the vessel. 

When it comes to regeneration, the temp of the bed is crucial. For type 3A, bed temps in the 175-260° range are commonly used. When olefins are prevalent in the gas, this lower range limits polymerization on the molecular sieve substrates. Most olefinic compounds will be eliminated at low temps, therefore a moderate heat up is advised; temps in the 200-315 °C range are required for 4A, 5A, and 13X sieves.

Following regeneration, the molecular sieve must be cooled to within 15° of the temp of the stream to be treated. The most straightforward way to accomplish this is to use the same gas stream as is used for heating but with no heat input. During the heat-up loop, gas flow ought to be a sequence of events leading to adsorption, and throughout the cooling cycle, it should be simultaneous (according to the procedure stream). In the lack of purge gas, tiny amounts of molecular sieves can be dried in an oven characterized by slow chilling in a closed environment, such as a desiccator.

The Activation Procedure

Process Analysis on Board
Source:Unsplash
  • A depressurization step is frequently included in the regeneration cycle. If the regeneration is carried out at a pressure lower than that of the adsorption stage, depressurization is needed. Because the regeneration gas is not the product gas, or perhaps another gas accessible at a lower pressure, such as N2, H2, CH4, and fuel gas, this could happen for a variety of reasons. The lower pressure can also be used to reduce the amount of energy required for regeneration.
  • Draining is the second step in molecular activation. Before introducing a heating gas, all liquid must be drained from the adsorber during the draining stage. Gravity flow is usually used to drain the liquid. Omitting for a little part caught in the molecular sieve and on the exterior of the adsorber container, practically all of the liquid is drained at the end of the draining step. This liquid is eliminated during the purging stage, which involves introducing cold regeneration gas for 1–2 hours to remove any leftover liquid.
  • The heating process begins with the infusion of hot regeneration gas into the vessel. To prevent thermal pressure, the temp is gradually expanded to the heating temp.
  • The heating energy required for the regeneration is supplied by a hot gas with a specified flow rate, temp, and flow duration.
  • The contaminant loading on the molecular sieve decreases as the temperature rises. Passing a hot gas stream has two impacts: first, the contaminant desorbs as the temp rises, and second, the desorbed pollution is transported out of the sheet. To desorb the contaminant, a particular amount of heat at a low temp should be introduced into the adsorber.
  • Furthermore, if the activation gas flow rate (or period) is too low, a deposit will develop on the higher layers of the molecular sieves because of a lack of resorption energy. Owing to the favoured direction of the flow, the gas does not move through the whole sheet in laminar flow or direction, but rather via only a portion of it. This could result in a localized build-up in the bed.
  • The molecular sieve is activated at the end of the heating stage. The contaminants, although, are not entirely removed. The balance conditions at the end of heating and the thermal pattern seen by the molecular sieve invariably leave a remnant content of contaminant in the molecular sieve.
  • For example, towards the end of a production procedure, a new sieve is activated at 500°C–600°C and has a really low remnant water content (less than 0.5 percent). The value of this remaining impurity content is determined by the regeneration grade (temp, duration, flow rate, and other process factors) as well as the molecular sieve’s age. As a result, the next adsorption cycle will have a shorter adsorption time.

Things to be Concerned About

Red Flag
Source:Unsplash

While molecular sieve activation is a simple process, you need to be cautious when handling the gases and heat. The last thing you want to do is cause a disaster. 

Conclusion

Molecular sieve is the best desiccant in the market. For the highest quality, Jalon is the best choice for you. Reach out to us and We will be delighted to provide you with our expertise. 

Table of Contents

Share:

More Posts

In Needs of Molecular Sieve Solution?

JALON JLOED MOLECULAR SIEVES USED FOR ELECTROLYTE DEHYDRATION

This letter is to inform you that we evaluated Molecular Sieve JLOED 3.0-5.0 MM product from Luoyang Jalon Micro-nano New Materials Co., Ltd to dry our organic solvents for production of electrolyte for Li ion battery. The resulting organic solvents that went through our process with the Molecular Sieve JLOED 3.0-5.0 MM product in our R/D and production facility located in Chico, CA, US passed our specifications showing extremely low content of moisture, below 10ppm. This Molecular Sieve product met our quality requirement, and it is highly recommended for use in the industry of Li ion battery for drying of organic solvents. We also appreciate the technical support from the company.

Nanotech Energy

Related Products
Cryogenic air separation unit Project
Yuntianhua United Commerce Co., Ltd. 52000 Nm3/Cryogenic air separation unit Project

Luoyang Jalon Micro-nano New Materials Co., Ltd. JLPM series molecular sieves are mainly used for cryogenic drying of general industrial gases. The purification system in the air separation unit removes H2O and CO2, as well as natural gas and other hydrocarbon desulfurization (removal of H2S and mercaptans) and CO2.

 

It is worth mentioning that Yuntianhua United Commerce Co., Ltd. Company 52000 Nm3/Cryogenic air separation unit project. The design and manufacture method of the air separation unit by air, adsorber adopt vertical radial flow design, processing capacity of 311352 nm3 / h, 5.13 Bar (A) adsorption pressure, loading type my company JLPM3 efficient molecular sieve 92 tons, 107 tons of activated alumina, can ensure that the CO2 content in the air mean 1000 parts per million (2000 PPM) instantaneous equipment and stable operation, export CO2 molecular sieve < 0.1 PPM.

The fifth-generation high-performance molecular sieve JLPM1 is an advanced molecular sieve used in the pre-purification unit (APPU) of air separation equipment. Compared with previous generations, the fifth-generation high-performance molecular sieve JLPM1 has significantly improved CO2 adsorption capacity; the fifth-generation high-performance molecular sieve JLPM1 will bring multiple benefits to air separation designers and operators. For the design of the new air separation plant, the application of the fifth-generation high-performance molecular sieve JLPM1 can make the air separation occupy a smaller area, thereby reducing equipment investment and operating costs. The fifth-generation high-performance molecular sieve JLPM1 can also be used for the transformation of old equipment, which can reduce energy consumption or improveair separation processing capacity.

Related Products
Zhuhai Yueyufeng Iron and Steel Co., Ltd. 30000Nm3/h pressure swing adsorption (VPSA) oxygen production project

Oxygen molecular sieve is an important material to ensure the work of VPSA oxygen production equipment. This project is another successful case of our JLOX-103 lithium-type high-efficiency oxygen molecular sieve.

 

The 30000Nm3/h pressure swing adsorption (VPSA) oxygen production project of Zhuhai Yueyufeng Iron and Steel Co., Ltd., designed and built by CSSC Huanggang Precious Metals Co., Ltd., was successfully started up on June 27, 2019. As of May 29, 2020, the device has been operating stably for 11 months, and all indicators are better than the design indicators. It has been highly recognized and praised by customers, and has created a cumulative effect of 150 million yuan per year for the enterprise. At the same time, the project has realized intelligent oxygen production, mobile control and remote monitoring to guide production, helping to realize the green and intelligent promotion of the industry.

 

The project uses 4 sets of pressure swing adsorption (VPSA) oxygen generators in parallel. The single set of device is designed to produce 7500Nm3/h of oxygen and 80% oxygen purity. It is filled with our company (Luoyang Jalon Micro Nano New Materials Co., Ltd.) JLOX-103 lithium-type high-efficiency oxygen molecular sieve is 68 tons, the actual oxygen output reaches 7650Nm3/h, and the oxygen concentration is above 82.3%. The 4 sets of equipment in this project are filled with 272 tons of our JLOX-103 oxygen molecular sieve, with a total oxygen production of more than 30000Nm3/h.

 

Oxygen molecular sieve is an important material to ensure the operation of VPSA oxygen production equipment. This project is another successful case of our company’s JLOX-103 lithium-type high-efficiency oxygen molecular sieve.

Luoyang Jalon Micro-nano New Materials Co., Ltd. JLOX-100 series high-efficiency oxygen generation molecular sieve is a lithium X-type aluminosilicate crystal, which is an oxygen generation molecular sieve with international advanced level. Widely used in: iron and steel, non-ferrous metallurgy, chemical industry, furnace energy-saving transformation, environmental protection, papermaking, aquaculture, medical care and other industries.

Related Products